Trigonometry and prosthaphaeresis rules
A ready-to-use set of trigonometry and prosthaphaeresis rules
Geometrical Definitions

Trigonometric functions are fundamental mathematical functions that relate the angles of a triangle to the lengths of its sides. These functions are essential when studying periodic phenomena, wave patterns, and oscillations, and they have extensive applications in fields such as physics, engineering, astronomy, and computer science.
Trigonometric functions can also be defined using the unit circle, a circle with a radius of 1, centred at the origin of the coordinate plane. Take a look at the image aside.
Understanding trigonometric functions is crucial for solving problems involving angles and distances, modelling periodic behaviours, and analyzing waves and harmonic motion.
Triangle relations

Trigonometric functions can be used to find the sizes of a right triangle using the measure of the angles. The relations are shown below: $$sin(\alpha)=\frac{c}{a} \qquad csc(\alpha)=\frac{a}{c}$$ $$cos(\alpha)=\frac{b}{a} \qquad sec(\alpha)=\frac{a}{b}$$ $$tan(\alpha)=\frac{c}{b} \qquad cot(\alpha)=\frac{b}{c}$$
Trigonometry Rules Table
Definitions
$$tan(x)=\frac{sin(x)}{cos(x)}$$ | $$cot(x)=\frac{cos(x)}{sin(x)}$$ | |
$$csc(x)=\frac{1}{sin(x)}$$ | $$sec(x)=\frac{1}{cos(x)}$$ | |
$$sin(x)=\frac{1}{csc(x)}$$ | $$cos(x)=\frac{1}{sec(x)}$$ | |
$$tan(x)=\frac{1}{cot(x)}$$ | $$cot(x)=\frac{1}{tan(x)}$$ |
Pythagorean Identities
$$sin^2(x)+cos^2(x) = 1$$ | $$tan^2(x)+1 = sec^2(x)$$ | $$cot^2(x)+1 = csc^2(x)$$ |
Equivalence Rules
$$sin(x+2\pi n) = sin(x)$$ | $$cos(x+2\pi n) = cos(x)$$ | $$tan(x+\pi n) = tan(x)$$ |
$$csc(x+2\pi n) = csc(x)$$ | $$sec(x+2\pi n) = sec(x)$$ | $$cot(x+\pi n) = cot(x)$$ |
$$sin(-x) = -sin(x)$$ | $$cos(-x) = cos(x)$$ | $$tan(-x) = -tan(x)$$ |
$$csc(-x) = -csc(x)$$ | $$sec(-x) = sec(x)$$ | $$cot(-x) = -cot(x)$$ |
Sum-Subtraction rules table
$$sin(x+y) = sin(x)cos(y)+cos(x)sin(y)$$ | $$sin(x-y) = sin(x)cos(y)-cos(x)sin(y)$$ |
$$cos(x+y) = cos(x)cos(y)-sin(x)sin(y)$$ | $$cos(x-y) = cos(x)cos(y)+sin(x)sin(y)$$ |
$$tan(x+y) = \frac{tan(x)+tan(y)}{1-tan(x)tan(y)}$$ | $$tan(x-y) = \frac{tan(x)-tan(y)}{1+tan(x)tan(y)}$$ |
Half/Double angle identities
$$sin(2x) = 2sin(x)cos(x)$$ | $$cos(2x) = cos^2(x)-sin^2(x)$$ | $$tan(2x) = \frac{2tan(x)}{1-tan^2(x)}$$ |
$$sin(\frac{x}{2}) = \pm \sqrt{\frac{1-cos(x)}{2}}$$ | $$cos(\frac{x}{2}) = \pm \sqrt{\frac{1+cos(x)}{2}}$$ | $$tan(\frac{x}{2}) = \pm \sqrt{\frac{1-cos(x)}{1+cos(x)}}$$ |
Prosthaphaeresis rules table
$$sin(x)sin(y) = \frac{1}{2}(cos(x-y)-cos(x+y))$$ | $$cos(x)cos(y) = \frac{1}{2}(cos(x-y)+cos(x+y))$$ |
$$sin(x)cos(y) = \frac{1}{2}(sin(x+y)+sin(x-y))$$ | $$cos(x)sin(y) = \frac{1}{2}(sin(x+y)-sin(x-y))$$ |
$$sin(x) + sin(y) = 2sin\frac{x+y}{2}cos\frac{x-y}{2}$$ | $$sin(x) - sin(y) = 2cos\frac{x+y}{2}sin\frac{x-y}{2}$$ |
$$cos(x) + cos(y) = 2cos\frac{x+y}{2}cos\frac{x-y}{2}$$ | $$cos(x) - cos(y) = -2sin\frac{x+y}{2}sin\frac{x-y}{2}$$ |
Notables Values
$$sin(n\pi) = 0$$ | $$sin(\frac{\pi}{6}) = \frac{1}{2}$$ | $$sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$$ | $$sin(\frac{\pi}{3}) = \frac{\sqrt{3}}{2}$$ | $$sin(\frac{\pi}{2}) = 1$$ |
$$cos(n\pi) = 1$$ | $$cos(\frac{\pi}{6}) = \frac{\sqrt{3}}{2}$$ | $$cos(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$$ | $$cos(\frac{\pi}{3}) = \frac{1}{2}$$ | $$cos(\frac{\pi}{2}) = 0$$ |
$$tan(n\pi) = 0$$ | $$tan(\frac{\pi}{6}) = \frac{\sqrt{3}}{3}$$ | $$tan(\frac{\pi}{4}) = 1$$ | $$tan(\frac{\pi}{3}) = \sqrt{3}$$ | $$tan(\frac{\pi}{2}) = \infty$$ |
$$cot(n\pi) = \infty$$ | $$cot(\frac{\pi}{6}) = \sqrt{3}$$ | $$cot(\frac{\pi}{4}) = 1$$ | $$cot(\frac{\pi}{3}) = \frac{\sqrt{3}}{3}$$ | $$cot(\frac{\pi}{2}) = 0$$ |
$$sec(n\pi) = 1$$ | $$sec(\frac{\pi}{6}) = \frac{2\sqrt{3}}{3}$$ | $$sec(\frac{\pi}{4}) = \sqrt{2}$$ | $$sec(\frac{\pi}{3}) = 2$$ | $$sec(\frac{\pi}{2}) = \infty$$ |
$$csc(n\pi) = \infty$$ | $$csc(\frac{\pi}{6}) = 2$$ | $$csc(\frac{\pi}{4}) = \sqrt{2}$$ | $$csc(\frac{\pi}{3}) = \frac{2\sqrt{3}}{3}$$ | $$csc(\frac{\pi}{2}) = 1$$ |
Comments
Please, remember to always be polite and respectful in the comments section. In case of doubts, read this before posting.
Posted comments ⮧
Comment section still empty.
INDEX
INFO


STATISTICS

CONTACTS
SHARE