NAVIGATE

RESOURCES

CHEATSHEETS

INFO

Trigonometry and prosthaphaeresis rules

A ready-to-use set of trigonometry and prosthaphaeresis rules

Geometrical Definitions

img
Unitary circle and trigonometric functions definition

Trigonometric functions are fundamental mathematical functions that relate the angles of a triangle to the lengths of its sides. These functions are essential when studying periodic phenomena, wave patterns, and oscillations, and they have extensive applications in fields such as physics, engineering, astronomy, and computer science.

Trigonometric functions can also be defined using the unit circle, a circle with a radius of 1, centred at the origin of the coordinate plane. Take a look at the image aside.

Understanding trigonometric functions is crucial for solving problems involving angles and distances, modelling periodic behaviours, and analyzing waves and harmonic motion.

Triangle relations

img
Right triangle with angles and sides named

Trigonometric functions can be used to find the sizes of a right triangle using the measure of the angles. The relations are shown below: $$sin(\alpha)=\frac{c}{a} \qquad csc(\alpha)=\frac{a}{c}$$ $$cos(\alpha)=\frac{b}{a} \qquad sec(\alpha)=\frac{a}{b}$$ $$tan(\alpha)=\frac{c}{b} \qquad cot(\alpha)=\frac{b}{c}$$

Trigonometry Rules Table

Definitions

$$tan(x)=\frac{sin(x)}{cos(x)}$$ $$cot(x)=\frac{cos(x)}{sin(x)}$$
$$csc(x)=\frac{1}{sin(x)}$$ $$sec(x)=\frac{1}{cos(x)}$$
$$sin(x)=\frac{1}{csc(x)}$$ $$cos(x)=\frac{1}{sec(x)}$$
$$tan(x)=\frac{1}{cot(x)}$$ $$cot(x)=\frac{1}{tan(x)}$$

Pythagorean Identities

$$sin^2(x)+cos^2(x) = 1$$ $$tan^2(x)+1 = sec^2(x)$$ $$cot^2(x)+1 = csc^2(x)$$

Equivalence Rules

$$sin(x+2\pi n) = sin(x)$$ $$cos(x+2\pi n) = cos(x)$$ $$tan(x+\pi n) = tan(x)$$
$$csc(x+2\pi n) = csc(x)$$ $$sec(x+2\pi n) = sec(x)$$ $$cot(x+\pi n) = cot(x)$$
$$sin(-x) = -sin(x)$$ $$cos(-x) = cos(x)$$ $$tan(-x) = -tan(x)$$
$$csc(-x) = -csc(x)$$ $$sec(-x) = sec(x)$$ $$cot(-x) = -cot(x)$$

Sum-Subtraction rules table

$$sin(x+y) = sin(x)cos(y)+cos(x)sin(y)$$ $$sin(x-y) = sin(x)cos(y)-cos(x)sin(y)$$
$$cos(x+y) = cos(x)cos(y)-sin(x)sin(y)$$ $$cos(x-y) = cos(x)cos(y)+sin(x)sin(y)$$
$$tan(x+y) = \frac{tan(x)+tan(y)}{1-tan(x)tan(y)}$$ $$tan(x-y) = \frac{tan(x)-tan(y)}{1+tan(x)tan(y)}$$

Half/Double angle identities

$$sin(2x) = 2sin(x)cos(x)$$ $$cos(2x) = cos^2(x)-sin^2(x)$$ $$tan(2x) = \frac{2tan(x)}{1-tan^2(x)}$$
$$sin(\frac{x}{2}) = \pm \sqrt{\frac{1-cos(x)}{2}}$$ $$cos(\frac{x}{2}) = \pm \sqrt{\frac{1+cos(x)}{2}}$$ $$tan(\frac{x}{2}) = \pm \sqrt{\frac{1-cos(x)}{1+cos(x)}}$$

Prosthaphaeresis rules table

$$sin(x)sin(y) = \frac{1}{2}(cos(x-y)-cos(x+y))$$ $$cos(x)cos(y) = \frac{1}{2}(cos(x-y)+cos(x+y))$$
$$sin(x)cos(y) = \frac{1}{2}(sin(x+y)+sin(x-y))$$ $$cos(x)sin(y) = \frac{1}{2}(sin(x+y)-sin(x-y))$$
$$sin(x) + sin(y) = 2sin\frac{x+y}{2}cos\frac{x-y}{2}$$ $$sin(x) - sin(y) = 2cos\frac{x+y}{2}sin\frac{x-y}{2}$$
$$cos(x) + cos(y) = 2cos\frac{x+y}{2}cos\frac{x-y}{2}$$ $$cos(x) - cos(y) = -2sin\frac{x+y}{2}sin\frac{x-y}{2}$$

Notables Values

$$sin(n\pi) = 0$$ $$sin(\frac{\pi}{6}) = \frac{1}{2}$$ $$sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$$ $$sin(\frac{\pi}{3}) = \frac{\sqrt{3}}{2}$$ $$sin(\frac{\pi}{2}) = 1$$
$$cos(n\pi) = 1$$ $$cos(\frac{\pi}{6}) = \frac{\sqrt{3}}{2}$$ $$cos(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$$ $$cos(\frac{\pi}{3}) = \frac{1}{2}$$ $$cos(\frac{\pi}{2}) = 0$$
$$tan(n\pi) = 0$$ $$tan(\frac{\pi}{6}) = \frac{\sqrt{3}}{3}$$ $$tan(\frac{\pi}{4}) = 1$$ $$tan(\frac{\pi}{3}) = \sqrt{3}$$ $$tan(\frac{\pi}{2}) = \infty$$
$$cot(n\pi) = \infty$$ $$cot(\frac{\pi}{6}) = \sqrt{3}$$ $$cot(\frac{\pi}{4}) = 1$$ $$cot(\frac{\pi}{3}) = \frac{\sqrt{3}}{3}$$ $$cot(\frac{\pi}{2}) = 0$$
$$sec(n\pi) = 1$$ $$sec(\frac{\pi}{6}) = \frac{2\sqrt{3}}{3}$$ $$sec(\frac{\pi}{4}) = \sqrt{2}$$ $$sec(\frac{\pi}{3}) = 2$$ $$sec(\frac{\pi}{2}) = \infty$$
$$csc(n\pi) = \infty$$ $$csc(\frac{\pi}{6}) = 2$$ $$csc(\frac{\pi}{4}) = \sqrt{2}$$ $$csc(\frac{\pi}{3}) = \frac{2\sqrt{3}}{3}$$ $$csc(\frac{\pi}{2}) = 1$$

Share this page

Whatsapp Facebook LinkedIn Reddit Twitter Mail

Comments

Please, remember to always be polite and respectful in the comments section. In case of doubts, read this before posting.

Posted comments ⮧

Comment section still empty.

INDEX


INFO

vAuthor: Vanadium
vLast Mod: 2024-06-16

STATISTICS

VViews: 492
UpVote: 6
DownVote: 1

CONTACTS


SHARE

Whatsapp Facebook LinkedIn Reddit Twitter Mail

If you liked

🍵
♥