NAVIGATE

RESOURCES

CHEATSHEETS

INFO

Boost converter - CCM and DCM

Boost converter CCM and DCM analysis

Boost CCM input-output relation

First, let's find the input-output relation of a CCM boost, assuming that the voltage across the inductor has a sum of 0V along the whole switching period. $$\begin{cases} \Delta I_L = \frac{V_I}{L}T_{on} = \frac{V_I}{Lf_{sw}}D\\ \Delta I_L = \frac{V_I-V_O}{L}T_{off} = \frac{V_I-V_O}{Lf_{sw}}D' \end{cases}$$ $$\frac{V_I}{Lf_{sw}}D= -\frac{V_I-V_O}{Lf_{sw}}D' \qquad \rightarrow \qquad D = \frac{V_I-V_O}{V_O}$$

Boost DCM input-output relation

Input-output relation in a boost converter operating in DCM is more complicated than CCM; here are the calculations. D is defined as turn-on time over a period and D' is turn-off time without idle time. $$\begin{cases} \Delta I_L = \frac{V_I}{L}T_{on} = \frac{V_I}{Lf_{sw}}D\\ \Delta I_L = \frac{V_I-V_O}{L}T_{off} = \frac{V_I-V_O}{Lf_{sw}}D' \end{cases} \qquad \rightarrow \qquad \begin{cases} T_{off} = \frac{V_I}{V_O-V_I}T_{on}\\ I_{L,avg} = \frac{T_{on}+T_{off}}{2T}I_{L,pk} = \frac{V_O(T_{on}+T_{off})}{R T_{off}}\\ I_{L,pk} = \frac{V_I}{L}T_{on} \end{cases}$$ $$\begin{cases} T_{off} = \frac{V_I}{V_O-V_I}T_{on}\\ \frac{T_{on}+\frac{V_I}{V_O-V_I}T_{on}}{2T}\frac{V_I}{L}T_{on} = \frac{V_O(T_{on}+\frac{V_I}{V_O-V_I}T_{on})}{R \frac{V_I}{V_O-V_I}T_{on}}\\ I_{L,pk} = \frac{V_I}{L}T_{on} \end{cases} \qquad \rightarrow \qquad \begin{cases} T_{off} = \frac{V_I}{V_O-V_I}T_{on}\\ \frac{T_{on}+\frac{V_I}{V_O-V_I}T_{on}}{2T}\frac{V_I}{L}T_{on} = \frac{V_O(T_{on}+\frac{V_I}{V_O-V_I}T_{on})}{R \frac{V_I}{V_O-V_I}T_{on}}\\ I_{L,pk} = \frac{V_I}{L}T_{on} \end{cases}$$ $$\begin{cases} T_{off} = \frac{V_I-V_O}{V_O}T_{on}\\ V_O^2 - V_I V_O - \frac{RV_I^2 D^2}{2Lf_{sw}} = 0 \\ I_{L,pk} = \frac{V_I-V_O}{L}T_{on} \end{cases} \qquad \rightarrow \qquad V_O = \frac{V_I+\sqrt{V_I^2+4*\frac{RV_I^2 D^2}{2Lf_{sw}}}}{2} $$

Boost CCM and DCM - Critical inductance

Like for the buck, also the boost converter has a critical inductance that is the minimum required to ensure that our DCDC will operate in CCM. $$\begin{cases} \Delta I_L = \frac{V_I}{L}T_{on} = \frac{V_I}{Lf_{sw}}D\\ \Delta I_L = \frac{V_I-V_O}{L}T_{off} = \frac{V_I-V_O}{Lf_{sw}}D' \end{cases}$$ Now we can find the critical inductance whose value sets the boost to work in BCM (Boundary mode), coming from CCM (so calculations are done considering CCM input-output relation) $$\overline{i_L} - \frac{\Delta I_L}{2} = 0$$ $$\frac{V_O}{RD'} - \frac{V_ID}{2Lf_{sw}} = 0$$ Rearranging the terms, we can obtain $$L = \frac{R D' V_I D}{2 V_O f_{sw}} = \frac{R D'^2 D}{2 f_{sw}} $$

Share this page

Whatsapp Facebook LinkedIn Reddit Twitter Mail

Comments

Please, remember to always be polite and respectful in the comments section. In case of doubts, read this before posting.

Posted comments ⮧

Comment section still empty.

INDEX


INFO

vAuthor: Vanadium
vLast Mod: 2023-06-02

STATISTICS

VViews: 209
UpVote: 2
DownVote: 1

CONTACTS


SHARE

Whatsapp Facebook LinkedIn Reddit Twitter Mail

If you liked

🍵
♥