NAVIGATE

RESOURCES

CHEATSHEETS

INFO

➔ Index of ⦁ Transmission Lines Theory ⦁

Transmission lines - Part IX: Examples

Some numerical example for transmission lines

Example1

img
LTspice circuit used to simulate this exercise

For this example, consider these data as input $$|V_g| = 5V \qquad R_g = 50Ohm \qquad Z_l = (11-18j)Ohm$$ $$Z_{\infty} = 50Ohm \qquad v_f = 217000000\frac{m}{s} \qquad l = 1.12m \qquad f=5GHz$$ Find the voltage at the V(A) and V(B) sections, showing all the passages. Here on the left, you can see the equivalent circuit for this transmission line.

TL parameters

$$k = \frac{2\pi}{\lambda} = \frac{2\pi f}{v_f} = \frac{5}{0.217}\pi\frac{rad}{m}$$ $$T_d = \frac{l}{v_f} = \frac{1.12}{217000000} s$$ $$C = \frac{1}{2\pi f X_l}$$

Gamma at B section

$$\Gamma_B = \frac{Z_l-Z_{\infty}}{Z_l+Z_{\infty}} = \frac{11-18j-50}{11-18j+50} = \frac{-39-18j}{61-18j}$$

Gamma and Z at A section

Now we can calculate Z starting from gamma $$\Gamma_A = \Gamma_B e^{-2jkl} = \frac{-39-18j}{61-18j} e^{-j\frac{11.2}{0.217}\pi}$$ $$ZA = Z_{\infty}\frac{1+\Gamma_A}{1-\Gamma_A}$$ or gamma starting from Z; the two methods are equivalent, use the one you prefer $$Z_A = \frac{Z_l - Z_{\infty}jtan(kz)}{1 - Z_l Y_{\infty}jtan(kz)} = \frac{(11-18j)-50jtan(-\frac{5.6}{0.217}\pi)}{1-(11-18j)0.02jtan(-\frac{5.6}{0.217}\pi)}$$ $$\Gamma_A = \frac{Z_A - Z_{\infty}}{Z_A + Z_{\infty}} = \frac{\frac{(11-18j)-50jtan(-\frac{5.6}{0.217}\pi)}{1-(11-18j)0.02jtan(-\frac{5.6}{0.217}\pi)}-50}{\frac{(11-18j)-50jtan(-\frac{5.6}{0.217}\pi)}{1-(11-18j)0.02jtan(-\frac{5.6}{0.217}\pi)}+50}$$

Voltage at section A

$$V_A = V_g \frac{Z_A}{Z_A+Z_g}$$

Voltage at section B (at load)

$$V_l = V_l^+ (1+\Gamma_B) = V_A^+ e^{-jkl} (1+\Gamma_B) = \frac{V_A}{1+\Gamma_A} (1+\Gamma_B) e^{-jkl}$$

Python3 code

Use Python or equivalent language to solve these problems; it is very difficult and risky to do everything by hand. Down below is the code that solves this example.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
from math import *
from cmath import *

Vg = 1
Rg = 50
Zl = 11-18j
Zinf = 50
vf = 217000000
l = 1.12
f = 5000000000

print("Load capacitance [F] ",1/2/pi/f/18)
print("Line delay [s]",l/vf)

k = 2*pi*f/vf
print("k [rad/m]",k)

gammaB = (Zl-Zinf)/(Zl+Zinf)
print("gammaB ",gammaB)

gammaA1 = gammaB*e**(-2j*k*l)
print("gammaA1 ",gammaA1)
ZA1 = Zinf*(1+gammaA1)/(1-gammaA1)
print("ZA1 ",ZA1)

ZA2 = (Zl-1j*Zinf*tan(-k*l))/(1-1j*Zl*(1/Zinf)*tan(-k*l))
print("ZA2 ",ZA2)

gammaA2 = (ZA2-Zinf)/(ZA2+Zinf)
print("gammaA2 ",gammaA2)

VA = Vg*ZA2/(ZA2+Rg)
print("VA ",polar(VA))

VA_plus = VA/(1+gammaA2)
print("VA_plus ",polar(VA_plus))

VB_plus = VA_plus*e**(-1j*k*l)
print("VB_plus ",polar(VB_plus))

VB = VB_plus*(1+gammaB)
print("VB ",polar(VB))

Solution

Numerical solutions are $$V_A = 0.8376728027570334e^{0.004012860094463412j} V \rightarrow |V_A| = 0.8376728027570334 \quad \angle V_A = 0.23°$$ $$V_B = 0.3316811133294016e^{0.48079221062116045j} V \rightarrow |V_B| = 0.3316811133294016 \quad \angle V_B = 27.55°$$ Let's rewrite the expressions in the time domain $$V_A(t) = 0.8376728027570334 \cdot cos(2\pi5GHz \ t + 0.004012860094463412)$$ $$V_B(t) = 0.3316811133294016 \cdot cos(2\pi5GHz \ t + 0.48079221062116045)$$ Now, look at the circuit simulated with LTspice and its result. They confirm the calculations (15.19ps over 200ps are 27.55° circa of phase delay).

img
Simulation results: they confirm the numerical solution

Example2

For this example, consider these data as input $$|V_g| = 5V \qquad R_g = 50Ohm \qquad Z_l = (30-20j)Ohm$$ $$Z_{\infty} = 50Ohm \qquad v_f = 200000000\frac{m}{s} \qquad l = 4.3m \qquad f=10GHz$$ Find the voltage at the V(A) and V(B) sections, showing all the passages. Here on the left, you can see the equivalent circuit for this transmission line.

TL parameters

$$k = \frac{2\pi}{\lambda} = \frac{2\pi f}{v_f} = 100\pi \frac{rad}{m}$$

Gamma at B section

$$\Gamma_B = \frac{Z_l-Z_{\infty}}{Z_l+Z_{\infty}} = \frac{30-20j-50}{30-20j+50} = -\frac{3+5j}{17}$$

Gamma at A section

Now we can calculate Z starting from gamma $$\Gamma_A = \Gamma_B e^{-2jkl} = -\frac{3+5j}{17} e^{-j200\pi \cdot 4.3} = -\frac{3+5j}{17} e^{-860j\pi} = -\frac{3+5j}{17}$$ $$Z_A = Z_{\infty}\frac{1+\Gamma_A}{1-\Gamma_A}$$ or gamma starting from Z; the two methods are equivalent, use the one you prefer $$Z_A = \frac{Z_l - Z_{\infty}jtan(kz)}{1 - Z_l Y_{\infty}jtan(kz)} = \frac{(30-20j)-50jtan(-430\pi\cdot 4.3)}{1-(30-20j)0.02jtan(-430\pi\cdot 4.3)} = (30-20j) Ohm$$ $$\Gamma_A = \frac{Z_A - Z_{\infty}}{Z_A + Z_{\infty}} = \frac{30-20j-50}{30-20j+50} = -\frac{3+5j}{17}$$ They are the same with both methods. The calculations are correct.

Voltage at section A and B

$$V_A = V_g \frac{Z_A}{Z_A+Z_g} = 5 \frac{30-20j}{30-20j+50}$$ $$V_l = V_l^+ (1+\Gamma_B) = V_A^+ (1+\Gamma_B) e^{-jkl} = \frac{V_A}{1+\Gamma_A} (1+\Gamma_B) e^{-jkl}$$

Solution

Again, use the previous Python script to solve this problem, just change the values at the beginning with the new ones: voltages are $$V_A = 2.1861865804881635e^{-0.343023940420717j}$$ $$V_B = 2.1861865804880147e^{-0.34302394042061535j}$$ In the time domain these two expressions become $$V_A(t) = 2.1861865804881635 \cdot cos(2\pi 10GHz \ t - 0.343023940420717)$$ $$V_B(t) = 2.1861865804880147 \cdot cos(2\pi 10GHz \ t - 0.34302394042061535)$$ Down below you can see the LTspice simulation result: delay between Vg and VA or VB is 5.576ps which, at 10GHz(100ps), corresponds to a phase delay of 0.35rad (20°) circa.

img
Simulation results: they confirm the numerical solution

Share this page

Whatsapp Facebook LinkedIn Reddit Twitter Mail

Comments

Please, remember to always be polite and respectful in the comments section. In case of doubts, read this before posting.

Posted comments ⮧

Comment section still empty.

INDEX


INFO

vAuthor: Vanadium
vLast Mod: 2024-01-20

STATISTICS

VViews: 256
UpVote: 10
DownVote: 2

PREVIOUS ARTICLE


CONTACTS


SHARE

Whatsapp Facebook LinkedIn Reddit Twitter Mail

If you liked

🍵
♥