NAVIGATE

RESOURCES

CHEATSHEETS

INFO

➔ Index of ⦁ Buck Converter ⦁

Buck converter - CCM and DCM

Analysis of the main parameters affecting the operating mode of a buck converter

Buck CCM

Let's define $$D = duty \ cycle$$ $$D' = 1-D$$

Finding output-to-input relation in case of a CCM buck is straightforward $$\begin{cases} \Delta I_L = \frac{V_I-V_O}{L}T_{on} = \frac{V_I-V_O}{Lf_{sw}}D\\ \Delta I_L = \frac{-V_O}{L}T_{off} = \frac{-V_O}{Lf_{sw}}D' \end{cases}$$ $$\frac{V_I-V_O}{Lf_{sw}}D = \frac{V_O}{Lf_{sw}}D' \qquad \rightarrow \qquad D = \frac{V_O}{V_I}$$

Buck DCM

Output-to-input relation in a buck converter operating in DCM is quite more complicated than CCM; here the calculations. Again, D is defined as turn-on time over period and D' is turn-off time over period without the idle time. $$\begin{cases} \Delta I_L = \frac{V_I-V_O}{L}T_{on} = \frac{V_I-V_O}{Lf_{sw}}D\\ \Delta I_L = \frac{-V_O}{L}T_{off} = \frac{-V_O}{Lf_{sw}}D' \end{cases} \qquad \rightarrow \qquad \begin{cases} T_{off} = \frac{V_I-V_O}{V_O}T_{on}\\ I_{L,avg} = \frac{T_{on}+T_{off}}{2T}I_{L,pk} = \frac{V_O}{R}\\ I_{L,pk} = \frac{V_I-V_O}{L}T_{on} \end{cases}$$ $$\begin{cases} T_{off} = \frac{V_I-V_O}{V_O}T_{on}\\ I_{L,avg} = \frac{T_{on}+\frac{V_I-V_O}{V_O}T_{on}}{2T}\frac{V_I-V_O}{L}T_{on} = \frac{V_O}{R}\\ I_{L,pk} = \frac{V_I-V_O}{L}T_{on} \end{cases} \qquad \rightarrow \qquad \begin{cases} T_{off} = \frac{V_I-V_O}{V_O}T_{on}\\ I_{L,avg} = \frac{V_I T_{on}}{2T L I_O} (V_I-V_O)T_{on} = V_O\\ I_{L,pk} = \frac{V_I-V_O}{L}T_{on} \end{cases}$$ $$\begin{cases} T_{off} = \frac{V_I-V_O}{V_O}T_{on}\\ I_{L,avg} = \frac{V_I D^2}{2 f_{sw} L I_O} V_I = V_O(1+\frac{V_I D^2}{2 f_{sw} L I_O})\\ I_{L,pk} = \frac{V_I-V_O}{L}T_{on} \end{cases} \qquad \rightarrow \qquad V_O = \frac{V_I}{1+\frac{2 f_{sw} L I_O}{V_I D^2}} $$

Buck CCM and DCM - Critical inductance

Buck converter can operate in both CCM and DCM, according to input and output voltage, inductor value, switching frequency and load conditions. Remember that all buck converters under light or no load condition will operate in DCM, so it is important to understand when such condition is met and if it is good for our design.

Since requirements are typically fixed (input, output voltage and loads operating points) we can operate on switching frequency and inductor value, so $$\begin{cases} \Delta I_L = \frac{V_I-V_O}{L}T_{on} = \frac{V_I-V_O}{Lf_{sw}}D\\ \Delta I_L = \frac{-V_O}{L}T_{off} = \frac{-V_O}{Lf_{sw}}D' \end{cases}$$ Now we can find the critical inductance whose value set the buck to work in BCM (Boundary mode) $$\overline{i_L} - \frac{\Delta I_L}{2} = 0$$ $$\frac{V_O}{R} - \frac{V_I-V_O}{2Lf_{sw}}D = 0$$ Rearranging terms we can obtain $$L = \frac{V_I-V_O}{2V_O f_{sw}}DR = \frac{V_I-V_O}{2I_O f_{sw}}D = \frac{(1-D)R}{2f_{sw}}$$ To ensure CCM operation, we must choose an inductor larger than the one obtained from the formula, also considering inductor tolerance and saturation.

Share this page

Whatsapp Facebook LinkedIn Reddit Twitter Mail

Comments

Please, remember to always be polite and respectful in the comments section. In case of doubts, read this before posting.

Posted comments ⮧

Comment section still empty.

INDEX


INFO

vAuthor: Vanadium
vLast Mod: 2023-06-02

STATISTICS

VViews: 301
UpVote: 3
DownVote: 1

PREVIOUS ARTICLE


NEXT ARTICLE


CONTACTS


SHARE

Whatsapp Facebook LinkedIn Reddit Twitter Mail

If you liked

🍵
♥